1.	To Derive:	v = u + at	
	Derivation:	Acceleration = Rate of Change in Velocity	
		$Acceleration = \frac{Change in Velocity}{Time}$	
		$a = \frac{v - u}{t}$	
		at = v - u	
		v = u + at	
2.	To Derive:	$s = ut + \frac{1}{2} at^2$	
Derivation: $Average \ Velocity = \frac{Initial \ Velocity + Final \ Velocity}{2}$		$Average \ Velocity = \frac{Initial \ Velocity + Final \ Velocity}{2}$	
		$V_{average} = \frac{u+v}{2}$	
		But v = u + at	
		$V_{average} = \frac{u+u+at}{2}$	
		$V_{average} = \frac{Displacement(s)}{Time(t)}$	
	$(V_{average})(t) = Displacement(s)$		
		$\left(\frac{u+u+at}{2}\right)(t) = s$	
		$\left(\frac{2u+at}{2}\right)(t) = s$	
		$\left(\frac{2ut+at^2}{2}\right) = s$	
		$ut + \frac{1}{2} at^2 = s$	

3.	To Derive:	$v^2 = u^2 + 2as$		
	Derivation:	We know: v = u + at	(Square both sides)	
		$v^2 = u^2 + 2uat + a^2t^2$	(Factorise out 2a)	
		$v^2 = u^2 + 2a(ut + \frac{1}{2}at^2)$	(We know $s = ut + \frac{1}{2} at^2$)	
		$v^2 = u^2 + 2as$		
4.	To Derive:	F = ma is a special case of Newton's Second Law [Use Newton's second law to establish the relationship: force = (mass)(acceleration)]		
	Derivation:	From Newton's 2 nd law: Force is proportional to the rate of change of momentum		
		Force ∞ rate of change of momentum		
		Force $\propto \left(\frac{Change\ of\ momentum}{Time}\right)$		
		$F \propto \left(\frac{mv - mu}{t}\right)$		
		$F \propto m\left(\frac{v-u}{t}\right)$		
		$F \propto ma$		
		F = k (ma)		
		F = ma		
5.	To Derive:	$v = r \omega$		
	Derivation:	We define $ heta$ (in radians) as (length of the arc)/radius: $ heta=rac{s}{r}$		
		Divide both sides by t :	$\frac{\theta}{t} = \frac{S}{tr}$	
		But $\omega = \frac{\theta}{t}$ and $v = \frac{s}{t}$:	$\omega = \frac{v}{r}$	
		Cross-multiply: $v = r \omega$		

6. To Derive:Relationship between Periodic Time (T) and Radius (R) for a satellite in orbit
$$T^2 = \frac{4\pi^2 R^3}{GM}$$
Derivation:We compare two formulae which we have for Force:
The first is the Universal Gravitational Force formula: $F_g = \frac{Gm_i m_2}{r^2}$
 $F_g = \frac{m_i r^2}{r}$ The second is the Centripetal Force formula: $F_g = \frac{m_i r^2}{r}$ Equate both forces (because both equations apply to satellite motion) $\frac{Gm_1 m_2}{r^2} = \frac{mv^2}{r}$ Cancel one of the "m"s and an "r" from each side:
 $\frac{Gm}{r} = v^2$ Meanwhile, $Velocity = \frac{Distance}{rime}$ In this case, the distance is the circumference of the orbit (2rtr) and the time is T
 $v = \frac{2\pi r}{T}$ $v = \frac{2\pi r}{T}$ $v^2 = \frac{4\pi^2 r^2}{T^2}$
 $T^2 = \frac{4\pi^2 r^2}{T^2}$ Let $v^2 = v^2$: $\frac{Gm}{r} = \frac{4\pi^2 r^2}{Gm}$ 7. To Derive:To show that any object that obeys Hooke's Law will also execute SHM
Derivation:Derivation:Start with the equation for Hooke's Law: $F < -s$ \Rightarrow $F = -k$ s
Now divide both sides by m: $a = -\frac{k}{m}$ s
This is equivalent to the equation for S.H.M. where the constant ω^2 in this case is k/m.

Г

