Leaving Cert Physics: Derivations

1. To Derive: $\quad v=u+a t$

Derivation: Acceleration = Rate of Change in Velocity

$$
\text { Acceleration }=\frac{\text { Change in Velocity }}{\text { Time }}
$$

$a=\frac{v-u}{t}$
at $=\mathrm{v}-\mathrm{u}$
$v=u+a t$
2. To Derive: $\quad s=u t+1 / 2 a t^{2}$

Derivation: \quad Average Velocity $=\frac{\text { Initial Velocity }+ \text { Final Velocity }}{2}$
$V_{\text {average }}=\frac{u+v}{2}$
But $v=u+a t$
$V_{\text {average }}=\frac{u+u+a t}{2}$
$V_{\text {average }}=\frac{\text { Displacement }(s)}{\operatorname{Time}(t)}$
$\left(V_{\text {average }}\right)(t)=$ Displacement (s)
$\left(\frac{u+u+a t}{2}\right)(t)=s$
$\left(\frac{2 u+a t}{2}\right)(t)=s$
$\left(\frac{2 u t+a t^{2}}{2}\right)=s$
$u t+1 / 2 a t^{2}=s$
3. To Derive: $\quad v^{2}=u^{2}+2 a s$

Derivation:
We know: $v=u+$ at \quad (Square both sides)

$$
\begin{array}{ll}
v^{2}=u^{2}+2 u a t+a^{2} t^{2} & \text { (Factorise out 2a) } \\
v^{2}=u^{2}+2 a\left(u t+1 / 2 a t^{2}\right) & \text { (We know } \left.s=u t+1 / 2 a t^{2}\right) \\
v^{2}=u^{2}+2 a s &
\end{array}
$$

4. To Derive: $\quad F=m a$ is a special case of Newton's Second Law [Use Newton's second law to establish the relationship: force = (mass)(acceleration)]

Derivation: From Newton's $2^{\text {nd }}$ law: Force is proportional to the rate of change of momentum
Force \propto rate of change of momentum
Force $\propto\left(\frac{\text { Change of momentum }}{\text { Time }}\right)$
$F \propto\left(\frac{m v-m u}{t}\right)$
$F \propto m\left(\frac{v-u}{t}\right)$
$F \propto m a$
$F=k(m a)$
$\mathrm{F}=\mathrm{ma}$
5. To Derive: $\quad v=r \omega$

Derivation: \quad We define θ (in radians) as (length of the arc)/radius: $\quad \theta=\frac{S}{r}$
Divide both sides by t $\quad: \quad \frac{\theta}{t}=\frac{S}{t r}$

But $\omega=\frac{\theta}{t}$ and $v=\frac{s}{t}: \quad \omega=\frac{v}{r}$

Cross-multiply: $\quad v=r \omega$
6. To Derive: Relationship between Periodic Time (T) and Radius (R) for a satellite in orbit

$$
T^{2}=\frac{4 \pi^{2} R^{3}}{G M}
$$

Derivation: We compare two formulae which we have for Force:

The first is the Universal Gravitational Force formula: $\quad F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$

The second is the Centripetal Force formula:

$$
F_{c}=\frac{m v^{2}}{r}
$$

Equate both forces (because both equations apply to satellite motion)

$$
\frac{G m_{1} m_{2}}{r^{2}}=\frac{m v^{2}}{r}
$$

Cancel one of the " m "s and an " r " from each side:

$$
\frac{G m}{r}=v^{2}
$$

Meanwhile, Velocity $=\frac{\text { Distance }}{\text { Time }}$
In this case, the distance is the circumference of the orbit $(2 \pi r)$ and the time is T

$$
v=\frac{2 \pi r}{T} \quad \Rightarrow \quad v^{2}=\frac{4 \pi^{2} r^{2}}{T^{2}}
$$

Let $\mathrm{v}^{2}=\mathrm{v}^{2}$:

$$
\begin{aligned}
\frac{G m}{r} & =\frac{4 \pi^{2} r^{2}}{T^{2}} \\
T^{2} & =\frac{4 \pi^{2} r^{3}}{G m}
\end{aligned}
$$

7. To Derive: To show that any object that obeys Hooke's Law will also execute SHM

Derivation: \quad Start with the equation for Hooke's Law: $\quad \mathrm{F} \propto-\mathrm{s} \quad \Rightarrow \quad \mathrm{F}=-\mathrm{k} \mathrm{s}$

But $\mathrm{F}=\mathrm{ma}$, so therefore $\mathrm{ma}=-\mathrm{ks}$
Now divide both sides by $m \quad a=-\frac{k}{m} \mathrm{~s}$
This is equivalent to the equation for S.H.M. where the constant ω^{2} in this case is k / m.
8. To Derive: Diffraction grating formula: $n \lambda=d \operatorname{Sin} \theta$

Derivation:

From the diagram we can see that:
For constructive interference to occur, the extra path length that the top ray travels must be an integer number of wavelengths ($\mathrm{n} \lambda$) \quad EEqn (1)\}

Using trigonometry, this extra path length is equal to $d \sin \theta$, where d is the slit width $\quad\{$ Eqn (2) $\}$

Equating (1) and (2) gives us $\mathbf{n} \boldsymbol{\lambda}=\mathbf{d} \operatorname{Sin} \boldsymbol{\theta}$
9. To Derive: Derive an expression for the effective resistance of the two resistors connected in series.

$$
\mathrm{R}_{\text {Total }}=\mathrm{R}_{1}+\mathrm{R}_{2}
$$

Derivation:

Apply Ohm's Law to each resistor:

$$
V_{1}=I\left(R_{1}\right) \quad \text { and } \quad V_{2}=I\left(R_{2}\right)
$$

Since the voltages are in series: $\quad V_{\text {total }}=V_{1}+V_{2}$

$$
V_{\text {total }}=I\left(R_{1}\right)+I\left(R_{2}\right)
$$

$I\left(R_{\text {total }}\right)=I\left(R_{1}+R_{2}\right) \quad$ (Divide across by I)
So, $\quad \mathrm{R}_{\text {Total }}=\mathrm{R}_{1}+\mathrm{R}_{2}$
10. To Derive: Derive an expression for the effective resistance of the two resistors connected in parallel.

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Derivation:

Apply Ohm's Law to each resistor:

$$
\begin{array}{cl}
\mathrm{V}=\mathrm{I}_{1}\left(\mathrm{R}_{1}\right) & \rightarrow \frac{V}{R_{1}}=I_{1} \\
\mathrm{~V}=\mathrm{I}_{2}\left(\mathrm{R}_{2}\right) & \rightarrow \frac{V}{R_{2}}=I_{2} \\
\mathrm{I}_{\text {total }} & \mathrm{I}_{1}+\mathrm{I}_{2} \\
\frac{V}{R_{\text {Total }}}= & \frac{V}{R_{1}}+\frac{V}{R_{2}}
\end{array}
$$

(Divide across by V)

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

11. To Derive:

Derivation:

Force on a moving charge: $\quad \mathrm{F}=\mathrm{Bqv}$

Consider a section of conductor of length l through which a current I is flowing.
If q is the charge which carries the current in this section of the conductor, then:
$I=q / t$, (remember $\mathrm{q}=\mathrm{It}$, where t is the time it takes the charge q to travel a distance $l)$.

The average velocity with which the charge flows is given by $v=l / t, \quad$ i.e. $l=v t$. Substituting into the primary equation which we have for force ($F=$ BIL) , we get

$$
\begin{gathered}
\mathrm{F}=\mathrm{B} \times \mathrm{q} / \mathrm{t} \times \mathrm{vt} \\
\text { i.e. } F=B q v
\end{gathered}
$$

