

Forces | Revision Booklet

Force

What is a force?

→ Anything that causes an object to change its velocity

What is the S.I. unit of force?

 \rightarrow Newtons (N)

Forces can ...

- \rightarrow cause an object to stretch
- → cause an object to compress
- \rightarrow cause an object to twist
- \rightarrow cause an object to change velocity (speed in a given direction)

Who is Isaac Newton?

- → English physicist, mathematician and philosopher
- → Studied at Cambridge where he earned a professorship
- \rightarrow Introduced the three laws of motion
- → Introduced the idea of gravity

How do we measure a force?

→ Newton meter / force meter

How do we calculate force?

 \rightarrow Formula: force (N) = mass (kg) x acceleration (m/s²)

Force Calculations

Example 1

What force is required to give a car of mass 1000kg and acceleration of 2m/s²?

Solution

Force (N) = mass (kg) x acceleration (m/s²)

Force (N) = $1000 \text{kg x } 2\text{m/s}^2$

Force (N) = 2000N

Example 2

What is the mass of a bowling ball that has a force of 100N placed on it and is accelerating at 20"m/ s²? Solution

Mass (kg) = $\frac{\text{Force (N)}}{\text{Acceleration (m/s^2)}}$

Mass (kg) = $\frac{100N}{20m/s^2}$

Mass (kg) = 5kg

Acceleration

What is acceleration?

→ Change in velocity per second

What is the S.I. unit of velocity?

→ Per second (m/s²)

Acceleration vs. Deceleration

- \rightarrow Acceleration is speeding up
- \rightarrow Deceleration is slowing down

Balanced and unbalanced forces

What is a balanced force?

→ Causes an object to move at a constant velocity

Examples of balanced forces

- → A parked car
- \rightarrow A car driving at constant speed on a road
- \rightarrow A pot of flowers sitting on a table
- → Cycling at a constant speed
- \rightarrow Sitting on a chair

What is an unbalanced force?

→ Cause an object to change velocity

Examples of unbalanced forces

- \rightarrow A car braking on a road
- \rightarrow A car speeding up on a road
- \rightarrow A pot of flowers falling off a table
- \rightarrow Cycling down a hill and not braking
- → A rocket launching

Types of forces

- → Friction
- → Weight
- → Air resistance

Describes the opposing forces of a moving object as it passes through the air)

 \rightarrow Buoyancy

The upward force exerted by a fluid that opposes the weight of a partially or fully immersed object

→ Magnetic forces

Attraction or repulsion that arises between electrically charged particles because of their motion

→ Electric forces

Attraction or repulsion that arises between electrically charged particles

An electric force exists between all charged particles, whether or not they're moving. A magnetic force exists between moving charged particles. This means that every charged particle gives off an electric field, whether or not it's moving.

Friction

What is friction?

 \rightarrow A force that opposes motion

What are the advantages of friction?

- → Brakes
- \rightarrow Slows down rain and hailstones
- → Allows us to move

What are the disadvantages of friction

- \rightarrow It makes things slow down
- → Wastes energy
- → Causes wear

How can we reduce friction?

- → Lubrication
- → Ball bearings
- → Streamlining

Weight

What is weight?

 \rightarrow A measure of the force of gravity acting on an object

How do we calculate weight?

 \rightarrow Formula: weight (N) = mass (kg) x acceleration of gravity (m/s²)

What is the S.I. unit of weight?

 \rightarrow Newtons (N)

Weight Calculations

Example 1 Tom's mass is 75kg. How much would he weigh on Earth? The acceleration of gravity on Earth is 9.8m/s². Solution Weight (N) = mass (kg) x Mass = acceleration of gravity (m/s²) Weight (N) = 75kg x 9.8m/s2 Weight (N) = 735N

Example 2

The acceleration of gravity on Jupiter is 25m/s2. If Louise weighs 1625N on Jupiter, what is Louise's mass? Solution $Mass = \frac{Weight (N)}{Acceleration of Gravity (m/s^2)}$ $Mass = \frac{1625N}{25m/s^2}$

Mass = 65kg

Example 3

When Neil Armstrong landed on the moon, he had a mass of 74kg and weighed 118.4N. What is the acceleration of gravity on the moon?

Solution

Acceleration of Gravity
$$(m/s^2) = \frac{\text{Weight (N)}}{\text{Mass (kg)}}$$

Acceleration of Gravity (m/s²) = $\frac{118.4N}{74kg}$

Acceleration of Gravity (m/s²) = 1.6m/s²

Mass vs. Weight

Mass

- → The amount of matter in a substance
- → The mass of an object is constant throughout the universe
- → The mass of an object can never be zero
- \rightarrow Measured in kilograms (kg)

Weight

- → A measure of the force of gravity acting on an object
- → The weight of an object is constant throughout the universe
- → The weight of an object can be zero if no gravity is present