
# Chapter 2 The Atom

#### 1. Introduction

The scientific name for materials is *matter*.

The idea that materials are made up of small particles is often referred to as the *particulate nature of matter*.



In the above experiment:

- Particles of the ammonia gas moving from left to right meet up with particles of hydrogen chloride gas moving from right to left.
- A white cloudy substance is formed where the particles of hydrogen chloride and ammonia meet.

The spreading of gases is called *diffusion*.

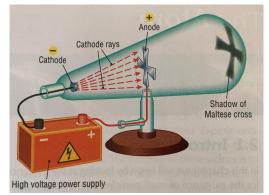
## 2. History of the Atom

*Greek philosophers* were the first to propose that matter was composed of small particles. They believed that those particles could not be broken down into smaller particles. They called these small particles *atoms*.

Later, in 1808 John Dalton (English chemist) came forward with an atomic theory. *His theory may be summarised as follows:* 

- 1. All matter is made up of very small particles called atoms.
- 2. All atoms are indivisible. They cannot be broken down into simpler particles.

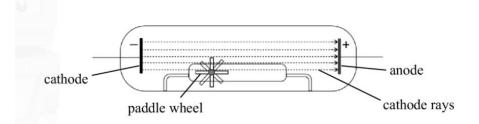
However, his theory started to be questioned towards the end of the XIX century as a result of a series of experiments.




John Dalton:

# 3. Discovery of the Electron

In 1875 William Crookes (English chemist)



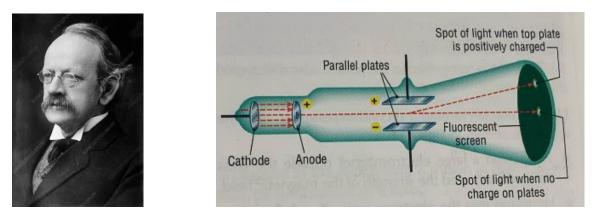



- Crookes used a *vacuum tube* long glass tube with an electrode at each end, inside the tube there was gas at low pressure
- Rays travelled from cathode to anode these rays were called cathode rays
- They travelled in straight lines to show the presence of radiation he placed a Maltese cross inside the tube a sharp shadow in glow formed at end of tube

(CNAP - cathode negative, anode positive)

<u>Crookes carried out a second experiment to investigate the properties of cathode rays (Crookes Paddle Wheel Experiment)</u>




- Consisted of a light paddle wheel mounted on rails in front of the cathode.
- When current on paddle wheel rotated and travelled down the tube.

• Vanes always turned away from the cathode (concluded: they were struck by particles from the cathode)

Crookes deducted properties of the cathode:

- Cathode rays travel in straight lines
- Cathode rays cause glass to fluorescence when they stroke it
- Cathode rays possess enough energy to move a paddle wheel

In 1897, J. J. Thomson (English scientist) - Nobel Prize in 1906 for the discovery of the electron

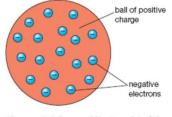


He obtained a narrow beam of cathode rays by passing them through a small hole in the positive electrode. The narrow beam then passed between two parallel metal plates (that could be given a charge) and then struck a fluorescent screen at the far end of the tube. This caused the fluorescent screen to glow.

- Showed cathode rays were attracted to positive plate therefore they were negative
- Measured e/m ratio using the fact that they are deflected by magnetic fields
- Same e/m no matter what gas/electrode materials therefore in all matter
- e/m is charge of electron over mass of electron which is equal to 1.76 x 10<sup>11</sup> coulombs per kg.

Cathode rays were called *electrons* – name proposed by George Stoney (professor of physics) to describe particles in an electric current.



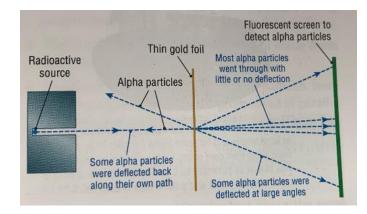

#### Definition (learn off)

Cathode rays are streams of negatively charged particles called electrons. They travel in straight lines from the cathode (-) to the anode (+), are deflected by electric and magnetic fields, and have sufficient energy to move small objects such as a paddle wheel.

## 4. Thomson's Plum Pudding Model for Atom

In 1898 J. J. Thomson proposed a very simple Plum Pudding model for the Atom:

- An atom is like a sphere of positive charge
- Electrons are embedded in the sphere at random

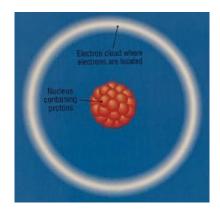



## Thomson's 'plum-pudding' model of the atom

## 5. Discovery of the Nucleus

In 1909, Ernest Rutherford (scientist from New Zealand) performed very important work – led to the discovery of the nucleus – Nobel Prize in Chemistry in 1908 for his work on radioactivity.

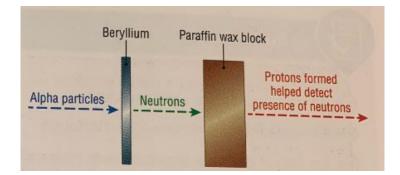





- Rutherford bombarded a thin piece of gold foil with alpha particles
- Alpha particles are *positively charged* 2 neutrons & 2 protons stuck together (nucleus of Helium atom)
- If Thomsons model was right, then you would expect that some alpha particles would be deflected by small amounts.
- Most alpha particles pass straight through the gold foil most of the atom is empty space.
- <u>Some alpha particles are deflected at large angles</u> the alpha particles are repelled when they pass near the small positive nucleus.
- <u>A small number of alpha particles are reflected back along their own paths</u> a small number of alpha particles collide head on with the nucleus.
- He concluded that the positive charge and the mass of the atoms of the metal foil were concentrated in a small dense positive core called the *nucleus* of the atom.
  Watch: <u>https://tinyurl.com/7zy5652f</u>

#### 6. Discovery of the Proton

Rutherford continued bombarding elements with alpha particles:


- Light atoms such as O, N small positively charged particles given off. This did not occur with heavier metals such as Au.
- They concluded that in the case of light atoms, the alpha particles were breaking up their nuclei
- Didn't occur for Au as large positive nuclear charge repelled the alpha particles before they had a chance to break up the nucleus.
- He called the small positive particles *protons*.
- He discovered that protons were located in the nucleus.
- He proposed a new structure of the atom it consisted of a nucleus and that the electrons were in some sort of 'electron cloud' surrounding the nucleus.



#### 7. Discovery of the Neutron

In 1932, James Chadwick carried out the following experiment – Nobel Prize in physics in 1935 for discovering the neutron.





- He bombarded a sample of beryllium with alpha particles.
- Some type of radiation with no charge came from beryllium.
- Particles neutral hard to detect
- These particles were penetrating enough to knock protons out of paraffin wax
- Concluded that the alpha particles were knocking these neutral particles out of the nucleus of the beryllium atom.
- Found that they had same mass as the proton and called them *neutrons*.

If only protons existed in the nucleus, it would fall apart because of the repulsive forces of the proton for each other.

# 8. Properties of the Sub-Atomic Particles

| Sub-Atomic Particle | <b>Relative Charge</b> | Relative Mass | Location        |
|---------------------|------------------------|---------------|-----------------|
| Proton              | +1                     | 1             | Nucleus         |
| Neutron             | 0                      | 1             | Nucleus         |
| Electron            | -1                     | 1             | Outside nucleus |
|                     |                        | 1838          |                 |