

Density | Revision Booklet

Volume

What is volume?

 \rightarrow The amount of space that an object takes up.

How do we accurately measure volume?

- → Beaker
- → Dropper
- → Graduated cylinder

What is the S.I. unit of volume?

→ Millilitres (ml) / centimetre cubed (cm³)

How do we calculate the volume of a regular shaped object?

The volume of a regular-shaped object can be found by measuring the length, width and height of the object using a ruler and using the formula: volume = length x width x height

How do we calculate the volume of an irregular shaped object?

- → The volume of an irregular-shaped object can be found by finding the volume of liquid that flows from the overflow can into a graduated cylinder.
- → Remember a graduated cylinder is designed to be read accurately if the bottom of the meniscus read

Mass

What is mass?

 The amount of matter inside an object

How do we accurately measure mass?

→ Mass balance

What is the S.I. unit of volume?

→ Kilogram (kg)

Introduction to Density

What is density?

 \rightarrow Mass of 1cm³ of a substance.

Examples:

- → Iron density = 7.874 g/cm³
- → Polystyrene density = 1.05 g/cm³

How do we accurately calculate density?

→ Formula: density = mass/volume

What is the S.I. unit of density?

→ Grams per centimetre cubed (g/cm³)

Example 1 – Calculating Density

A dry stone is placed on a balance. The mass is found to be 36g. Using a graduated cylinder of water, the volume of the stone is found to be 12cm³. What is the density of the dry stone?

Solution

Example 2 – Calculating Volume What is the volume of a stone a stone of mass 30g and density 2.5g/cm³? Solution Volume = $\frac{Mass}{Density}$

Mass = 30g , Density = 2.5g/ cm³

Volume = $\frac{30g}{2.5g/cm^3}$

Volume = 12 cm³

Example 3 -Calculating Mass What is the mass of a piece of metal that has a density of 20g/cm³ and a volume of .5cm³? Solution Mass = Density x Volume Density = 20g/cm³ , Volume = 0.5cm³ Mass = 20g/cm³ = x 0.5

Mass = 10g

Importance of Density

Density can help us predict if something will float or sink in water. The density of water is 1 g/cm3. If a substance has a lower density than water, it will float. For example, oil has a density of 0.93 g/cm3. If a substance has a higher density than water, it will sink. For example, iron has a density of 7.874 g/cm3.

0

Engineers use the density of objects to design lower density objects. For example, aircraft use metals of low density and the MacBook Air and suitcases are made of low-density components to keep them as light as possible.