Heat | Notes

Definitions

Thermometric property: Property that changes measurably with temperature

Triple point of water: Point at which water can remain in equilibrium in its liquid, gaseous and solid states

Absolute zero: -273 K

Brownian motion: Rapid, random motion of particles

Real gas: Is a gas that does not behave like an ideal gas due to reactions with different gas molecules

Ideal gas: One that obeys all the gas laws at all temperatures and pressures.

Charles law: Sates that the volume of a fixed mass of gas at constant pressure is directly proportional to its temperature measured on the kelvin scale.

Boyles law: States that the pressure of a fixed mass of gas at constant temperature is inversely proportional to its volume.

Endothermic Reaction: Heat taken in from the surroundings

Exothermic reaction: heat given out to the surroundings.

Assumptions of the kinetic theory of gases: Particles are in constant motion, Particles collide with one another, No forces of attraction between particles

Temperature: Measure of how hot or cold an object is.

Heat of combustion: Heat change when one mole of a substance is burned is excess oxygen

Heat of solution: Heat change when one mole of a substance is dissolved is excess solution

Heat of reaction: Heat change when

Hess's law: The heat change of a reaction is independent of the path taken and depends only on the initial and final states.

Heat of formation: Heat change taken place one mole of a substance is formed from its elements in their standard state

Formulas to Remember

Charles Law:		$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$			
Gas Law:	Pv = nRT				
P= Pressure	V=Volume	n=No. of Moles	R=Gas Constant	T=Temp	
Temperature:		$\boldsymbol{\theta} = \left[\frac{Y_{\theta} - Y_0}{Y_{100} - Y_0} \mathbf{x} 100\right]$			
$Y_{\theta} = Height at \theta^{\circ}C$		$Y_0 = Height$ at	$Y_{100} = H_0$	$Y_{100} = Height at 100^{\circ}C$	